Don't you feel already safer! 😊 I think such driving tests will be no big deal and no obstacle at all! A piece of (3D printed) cake in the end!
I certainly could use a driverless car since I don't enjoy driving a car myself that much. A bit of waste of time to me! Instead of being tied behind the steering wheel I could e.g. write a new blog post while driving from A to B.
Once we have driverless cars, do we still want personal ownership of such cars. What are then the benefits? Car/ride sharing arrangements or taxi like services etc. may replace current dominant personal ownership. Few people need access to a car 24 hours every day.
From the abstract:
"One critical bottleneck [???] that impedes the development and deployment of autonomous vehicles is the prohibitively high economic and time costs required to validate their safety in a naturalistic driving environment, owing to the rarity of safety-critical events [??? Try driving on a busy parking lot]. Here we report the development of an intelligent testing environment, where artificial-intelligence-based background agents are trained to validate the safety performances of autonomous vehicles in an accelerated mode, without loss of unbiasedness. From naturalistic driving data, the background agents learn what adversarial manoeuvre to execute through a dense deep-reinforcement-learning (D2RL) approach, in which Markov decision processes are edited by removing non-safety-critical states and reconnecting critical ones so that the information in the training data is densified. D2RL enables neural networks to learn from densified information with safety-critical events and achieves tasks that are intractable for traditional deep-reinforcement-learning approaches. We demonstrate the effectiveness of our approach by testing a highly automated vehicle in both highway and urban test tracks with an augmented-reality environment, combining simulated background vehicles with physical road infrastructure and a real autonomous test vehicle. Our results show that the D2RL-trained agents can accelerate the evaluation process by multiple orders of magnitude (103 to 105 times faster). In addition, D2RL will enable accelerated testing and training with other safety-critical autonomous systems."
Dense reinforcement learning for safety validation of autonomous vehicles (no public access)
Credits: Synced Global AI Weekly
Fig. 1: Validating safety-critical AI with the dense-learning approach.
No comments:
Post a Comment