Sunday, July 18, 2021

Ultralight material withstands supersonic microparticle impacts

Recommendable!

"A new study by engineers at MIT, Caltech, and ETH Zürich shows that “nanoarchitected” materials — materials designed from precisely patterned nanoscale structures — may be a promising route to lightweight armor, protective coatings, blast shields, and other impact-resistant materials.
The researchers have fabricated an ultralight material made from nanometer-scale carbon struts that give the material toughness and mechanical robustness. The team tested the material’s resilience by shooting it with microparticles at supersonic speeds, and found that the material, which is thinner than the width of a human hair, prevented the miniature projectiles from tearing through it. ...
At Caltech, they first fabricated a nanoarchitected material using two-photon lithography, a technique that uses a fast, high-powered laser to solidify microscopic structures in a photosensitive resin. The researchers constructed a repeating pattern known as a tetrakaidecahedron — a lattice configuration composed of microscopic struts."

Ultralight material withstands supersonic microparticle impacts | MIT News | Massachusetts Institute of Technology The new carbon-based material could be a basis for lighter, tougher alternatives to Kevlar and steel.

No comments: