Monday, December 11, 2023

Researchers create first logical quantum processor with quantum error correction and fault tolerance

Good news! Amazing stuff! Could be a major breakthrough!

"... The team ... has created the first programmable, logical quantum processor, capable of encoding up to 48 logical qubits, and executing hundreds of logical gate operations, a vast improvement over prior efforts. ...
The system is the first demonstration of large-scale algorithm execution on an error-corrected quantum computer, heralding the advent of early fault-tolerant, or reliably uninterrupted, quantum computation. ...
the ideas of quantum error correction and fault tolerance, long theorized, are starting to bear fruit. ...
The ... team’s breakthrough builds on several years of work on a quantum computing architecture known as a neutral atom array ... It is now being commercialized by QuEra ..."

From the abstract:
"Suppressing errors is the central challenge for useful quantum computing, requiring quantum error correction for large-scale processing. However, the overhead in the realization of error-corrected “logical” qubits, where information is encoded across many physical qubits for redundancy, poses significant challenges to large-scale logical quantum computing. Here we report the realization of a programmable quantum processor based on encoded logical qubits operating with up to 280 physical qubits. Utilizing logical-level control and a zoned architecture in reconfigurable neutral atom arrays, our system combines high two-qubit gate fidelities, arbitrary connectivity, as well as fully programmable single-qubit rotations and mid-circuit readout Operating this logical processor with various types of encodings, we demonstrate improvement of a two-qubit logic gate by scaling surface code distance from d = 3 to d = 7, preparation of color code qubits with break-even fidelities, fault-tolerant creation of logical GHZ states and feedforward entanglement teleportation, as well as operation of 40 color code qubits. Finally, using three-dimensional [[8,3,2]] code blocks, we realize computationally complex sampling circuits with up to 48 logical qubits entangled with hypercube connectivity with 228 logical two-qubit gates and 48 logical CCZ gates. We find that this logical encoding substantially improves algorithmic performance with error detection, outperforming physical qubit fidelities at both cross-entropy benchmarking and quantum simulations of fast scrambling. These results herald the advent of early error-corrected quantum computation and chart a path toward large-scale logical processors."

Harvard researchers create first logical quantum processor — Harvard Gazette Key step toward reliable, game-changing quantum computing

No comments: