Recommendable! Amazing stuff!
"... Scientists on the LHCb experiment at the Large Hadron Collider study much more subtle differences between matter particles and their antimatter equivalents. A recent analysis allowed them to revisit an old mystery—an asymmetry between asymmetries. ...
Asymmetries are the reason we exist. CP violation—when mirror-image particles with equal and opposite charges do not have equal-and-opposite behavior—is the reason the universe was able to grow into more than the fizzing soup of particles that defined it after its birth 13 billion years ago. ...
studies particle collisions produced by the Large Hadron Collider. Parker and his colleagues are using these collisions to examine CP violation in B mesons, a phenomenon first observed ... in the early 2000s. Like kaons, B mesons contain a matter quark and an antimatter quark that oscillate between the two identities. LHCb scientists use their detector to capture the decay products of these flippant B mesons and reconstruct their final internal configurations. ...
While LHCb scientists saw a clear favoritism for one configuration in neutral B mesons, they also confirmed that the same favoritism does not exist for charged B mesons, an effect first seen at BaBar and Belle. LHCb’s result significantly strengthens this mysterious asymmetry of the asymmetries. ..."
Asymmetries are the reason we exist. CP violation—when mirror-image particles with equal and opposite charges do not have equal-and-opposite behavior—is the reason the universe was able to grow into more than the fizzing soup of particles that defined it after its birth 13 billion years ago. ...
studies particle collisions produced by the Large Hadron Collider. Parker and his colleagues are using these collisions to examine CP violation in B mesons, a phenomenon first observed ... in the early 2000s. Like kaons, B mesons contain a matter quark and an antimatter quark that oscillate between the two identities. LHCb scientists use their detector to capture the decay products of these flippant B mesons and reconstruct their final internal configurations. ...
While LHCb scientists saw a clear favoritism for one configuration in neutral B mesons, they also confirmed that the same favoritism does not exist for charged B mesons, an effect first seen at BaBar and Belle. LHCb’s result significantly strengthens this mysterious asymmetry of the asymmetries. ..."
No comments:
Post a Comment