Good news! Amazing stuff! The potential for biomedical applications seem enormous!
"... As one would do with a Lego system, the scientists can randomly combine individual components. The building blocks or voxels – which could be described as 3D pixels – are made of different materials: from basic matrix materials that hold up the construction to magnetic components enabling the control of the soft machine. “You can put the individual soft parts together in any way you wish, with no limitations on what you can achieve. In this way, each robot has an individual magnetisation profile,” ..."
"Small-scale soft-bodied machines that respond to externally applied magnetic field have attracted wide research interest because of their unique capabilities and promising potential in a variety of fields, especially for biomedical applications ... we propose a bottom-up assembly-based 3D microfabrication approach to create complex 3D miniature wireless magnetic soft machines at the milli- and sub-millimeter scale with arbitrary multimaterial compositions, arbitrary 3D geometries, and arbitrary programmable 3D magnetization profiles at high spatial resolution. This approach helps us concurrently realize diverse characteristics on the machines, including programmable shape morphing, negative Poisson’s ratio, complex stiffness distribution, directional joint bending, and remagnetization for shape reconfiguration.
It enlarges the design space and enables biomedical device-related functionalities that are previously difficult to achieve, including peristaltic pumping of biological fluids and transport of solid objects, active targeted cargo transport and delivery, liquid biopsy, and reversible surface anchoring in tortuous tubular environments withstanding fluid flows, all at the sub-millimeter scale. ..."
It enlarges the design space and enables biomedical device-related functionalities that are previously difficult to achieve, including peristaltic pumping of biological fluids and transport of solid objects, active targeted cargo transport and delivery, liquid biopsy, and reversible surface anchoring in tortuous tubular environments withstanding fluid flows, all at the sub-millimeter scale. ..."
Here is the link to the underlying research article:
No comments:
Post a Comment