Thursday, February 20, 2025

Can deep learning transform heart failure prevention? A rhetorical question!

Good news!

"... a noninvasive deep learning approach that analyzes electrocardiogram (ECG) signals to accurately predict a patient’s risk of developing heart failure. In a clinical trial, the model showed results with accuracy comparable to gold-standard but more-invasive procedures, giving hope to those at risk of heart failure.
The condition has recently seen a sharp increase in mortality, particularly among young adults, likely due to the growing prevalence of obesity and diabetes. ...

The current gold standard for measuring left atrial pressure is right heart catheterization (RHC), an invasive procedure that requires a thin tube (the catheter) attached to a pressure transmitter to be inserted into the right heart and pulmonary arteries. Physicians often prefer to assess risk noninvasively before resorting to RHC, by examining the patient’s weight, blood pressure, and heart rate.

Cardiac Hemodynamic AI monitoring System (CHAIS), a deep neural network capable of analyzing ECG data from a single lead — in other words, the patient only needs to have a single adhesive, commercially-available patch on their chest that they can wear outside of the hospital, untethered to a machine. ..."

From the abstract:
"Background
The ability to non-invasively measure left atrial pressure would facilitate the identification of patients at risk of pulmonary congestion and guide proactive heart failure care. Wearable cardiac monitors, which record single-lead electrocardiogram data, provide information that can be leveraged to infer left atrial pressures.

Methods
We developed a deep neural network using single-lead electrocardiogram data to determine when the left atrial pressure is elevated. The model was developed and internally evaluated using a cohort of 6739 samples from the Massachusetts General Hospital (MGH) and externally validated on a cohort of 4620 samples from a second institution. We then evaluated model on patch-monitor electrocardiographic data on a small prospective cohort.

Results
The model achieves an area under the receiver operating characteristic curve of 0.80 for detecting elevated left atrial pressures on an internal holdout dataset from MGH and 0.76 on an external validation set from a second institution.
A further prospective dataset was obtained using single-lead electrocardiogram data with a patch-monitor from patients who underwent right heart catheterization at MGH. Evaluation of the model on this dataset yielded an area under the receiver operating characteristic curve of 0.875 for identifying elevated left atrial pressures for electrocardiogram signals acquired close to the time of the right heart catheterization procedure.

Conclusions
These results demonstrate the utility and the potential of ambulatory cardiac hemodynamic monitoring with electrocardiogram patch-monitors."

Can deep learning transform heart failure prevention? | MIT News | Massachusetts Institute of Technology "A deep neural network called CHAIS may soon replace invasive procedures like catheterization as the new gold standard for monitoring heart health."



Fig. 1: Model development and evaluation.


No comments: