Sunday, August 20, 2023

Study discovers pairing of electrons in artificial atoms, a quantum state predicted more than 50 years ago

Amazing stuff!

"Researchers ... observed a quantum state that was theoretically predicted more than 50 years ago by Japanese theoreticians but so far eluded detection. By tailoring an artificial atom on the surface of a superconductor, the researchers succeeded in pairing the electrons of the so-called quantum dot, thereby inducing the smallest possible version of a superconductor. ...
if the electrons are "glued" together to pairs thereby becoming bosons. Bosonic pairs do not avoid each other like single electrons, but many of them can reside at the very same location or do the very same motion.
One of the most intriguing properties of a material with such electron pairs is superconductivity ...
Researchers ... have now realized the pairing of electrons in an artificial atom called quantum dot, which is the smallest building block for nanostructured electronic devices. ..."

From the abstract:
"Gapless materials in electronic contact with superconductors acquire proximity-induced superconductivity in a region near the interface. Numerous proposals build on this addition of electron pairing to originally non-superconducting systems and predict intriguing phases of matter, including topological, odd-frequency, nodal-point or Fulde–Ferrell–Larkin–Ovchinnikov superconductivity. Here we investigate the most miniature example of the proximity effect on only a single spin-degenerate quantum level of a surface state confined in a quantum corral on a superconducting substrate, built atom by atom by a scanning tunneling microscope. Whenever an eigenmode of the corral is pitched close to the Fermi energy by adjusting the size of the corral, a pair of particle–hole symmetric states enters the gap of the superconductor. We identify these as spin-degenerate Andreev bound states theoretically predicted 50 years ago by Machida and Shibata, which had—so far—eluded detection by tunnel spectroscopy but were recently shown to be relevant for transmon qubit devices. We further find that the observed anticrossings of the in-gap states are a measure of proximity-induced pairing in the eigenmodes of the quantum corral. Our results have direct consequences on the interpretation of impurity-induced in-gap states in superconductors, corroborate concepts to induce superconductivity into surface states and further pave the way towards superconducting artificial lattices."

Study discovers pairing of electrons in artificial atoms, a quantum state predicted more than 50 years ago

Pairing of electrons in artificial atoms discovered (primary news source)



Fig. 1: Atom-by-atom built QDs coupled to a superconducting substrate.



No comments: