Saturday, August 26, 2023

Switching ‘spin’ on and off (and up and down) in organic semiconductors at room temperature

Amazing stuff! And at room temperature!

"... An international team of researchers, led by the University of Cambridge, has found a way to use particles of light as a ‘switch’ that can connect and control the spin of electrons, making them behave like tiny magnets that could be used for quantum applications.
The researchers designed modular molecular units connected by tiny ‘bridges’. Shining a light on these bridges allowed electrons on opposite ends of the structure to connect to each other by aligning their spin states. Even after the bridge was removed, the electrons stayed connected through their aligned spins.
This level of control over quantum properties can normally only be achieved at ultra-low temperatures. However, the ... team has been able to control the quantum behaviour of these materials at room temperature, which opens up a new world of potential quantum applications by reliably coupling spins to photons. ..."

From the abstract:
"Molecules present a versatile platform for quantum information science and are candidates for sensing and computation applications. Robust spin-optical interfaces are key to harnessing the quantum resources of materials. To date, carbon-based candidates have been non-luminescent, which prevents optical readout via emission. Here we report organic molecules showing both efficient luminescence and near-unity generation yield of excited states with spin multiplicity S > 1. This was achieved by designing an energy resonance between emissive doublet and triplet levels, here on covalently coupled tris(2,4,6-trichlorophenyl) methyl-carbazole radicals and anthracene. We observed that the doublet photoexcitation delocalized onto the linked acene within a few picoseconds and subsequently evolved to a pure high-spin state (quartet for monoradical, quintet for biradical) of mixed radical–triplet character near 1.8 eV. These high-spin states are coherently addressable with microwaves even at 295 K, with optical readout enabled by reverse intersystem crossing to emissive states. Furthermore, for the biradical, on return to the ground state the previously uncorrelated radical spins either side of the anthracene shows strong spin correlation. Our approach simultaneously supports a high efficiency of initialization, spin manipulations and light-based readout at room temperature. The integration of luminescence and high-spin states creates an organic materials platform for emerging quantum technologies."

Switching ‘spin’ on and off (and up and down) in quantum materials at room temperature | University of Cambridge Researchers have found a way to control the interaction of light and quantum ‘spin’ in organic semiconductors, that works even at room temperature.


Fig. 1: Luminescent radical-acene molecular system.



No comments: