Tuesday, August 08, 2023

On Scientific discovery in the age of artificial intelligence

Might be an interesting overview article! The ML & AI researcher community is reaching out researchers in other branches of science.

Some of the authors are very well known machine learning & AI researchers like Anima Anandkumar, Pushmeet Kohli, Jure Leskovec, Petar Veličković, Max Welling, Yoshua Bengio

Let's hope this article will soon become available to the public!

AI & medicine e.g. will allow us to defeat much faster cancer, future pandemics, neurodegenerative diseases ... You name it!

From the abstract:
"Artificial intelligence (AI) is being increasingly integrated into scientific discovery to augment and accelerate research, helping scientists to generate hypotheses, design experiments, collect and interpret large datasets, and gain insights that might not have been possible using traditional scientific methods alone. Here we examine breakthroughs over the past decade that include self-supervised learning, which allows models to be trained on vast amounts of unlabelled data, and geometric deep learning, which leverages knowledge about the structure of scientific data to enhance model accuracy and efficiency. Generative AI methods can create designs, such as small-molecule drugs and proteins, by analysing diverse data modalities, including images and sequences. We discuss how these methods can help scientists throughout the scientific process and the central issues that remain despite such advances. Both developers and users of AI tools need a better understanding of when such approaches need improvement, and challenges posed by poor data quality and stewardship remain. These issues cut across scientific disciplines and require developing foundational algorithmic approaches that can contribute to scientific understanding or acquire it autonomously, making them critical areas of focus for AI innovation."

Scientific discovery in the age of artificial intelligence | Nature (No public access)

No comments: