Good news! Amazing stuff!
"In theory, the tool could be used to spot 160,000 different molecules in a single square centimeter of space. Developed to spot gene fragments from the SARS-CoV-2 virus and other infectious organisms, the technology should also be able to identify protein markers of cancer and small molecules flagging toxic threats in the environment. ...
Genetic tests are nothing new. Most of these technologies rely on measuring light absorption or emission from probe molecules tailored to latch onto the target gene. But to produce a signal large enough to detect, most of the technologies rely on amplifying techniques such as polymerase chain reaction to produce many copies of the target before trying to detect them, adding to the cost and time of the tests. ...
Genetic tests are nothing new. Most of these technologies rely on measuring light absorption or emission from probe molecules tailored to latch onto the target gene. But to produce a signal large enough to detect, most of the technologies rely on amplifying techniques such as polymerase chain reaction to produce many copies of the target before trying to detect them, adding to the cost and time of the tests. ...
In hopes of getting around these problems, ... colleagues turned to an optical detection approach that relies on metasurfaces, arrays of tiny silicon boxes—each roughly 500 nanometers high, 600 nanometers long, and 160 nanometers wide—that focus near-infrared light on their top surface. This focusing makes it easy for a simple optical microscope to detect the shift in the wavelength of light coming from each silicon block, which varies depending on what molecules sit on top. ..."
No comments:
Post a Comment