"They developed a sensory integrated artificial brain system that mimics biological neural networks, which can run on a power-efficient neuromorphic processor, such as Intel’s Loihi chip. This novel system integrates artificial skin and vision sensors, equipping robots with the ability to draw accurate conclusions about the objects they are grasping based on the data captured by the vision and touch sensors in real-time. ... In the new robotic system, the NUS team applied an advanced artificial skin known as Asynchronous Coded Electronic Skin (ACES) developed by Asst Prof Tee and his team in 2019. This novel sensor detects touches more than 1,000 times faster than the human sensory nervous system. It can also identify the shape, texture and hardness of objects 10 times faster than the blink of an eye. ... In their initial experiments, the researchers fitted a robotic hand with the artificial skin, and used it to read braille, passing the tactile data to Loihi via the cloud to convert the micro bumps felt by the hand into a semantic meaning. Loihi achieved over 92 per cent accuracy in classifying the Braille letters, while using 20 times less power than a normal microprocessor. "
Intelligent sensing abilities for robots to carry out complex tasks | NUS Research News
No comments:
Post a Comment