Communist regimes do not care about intellectual property rights! As Lenin purportedly expressed something like capitalists will sell even the rope on which they will be hanged.
Of course, all such headline grabbing claims need to be taken with a (sizable) grain of salt! However, it might very well be a wake up call for Western countries single mindedly focusing on wind mill farms like Don Quijote and being obsessed with Climate Change superstition!
Nevertheless, this seem to be a major effort by the ASPI to measure and evaluate technological progress by country.
"... "Over the past five years, China generated 48.49% of the world's high-impact research papers into advanced aircraft engines, including hypersonics, and it hosts seven of the world's top 10 research institutions," it said. ..."
"China’s global lead extends to 37 out of 44 technologies that ASPI is now tracking, covering a range of crucial technology fields spanning defence, space, robotics, energy, the environment, biotechnology, artificial intelligence (AI), advanced materials and key quantum technology areas. The Critical Technology Tracker shows that, for some technologies, all of the world’s top 10 leading research institutions are based in China and are collectively generating nine times more high-impact research papers than the second-ranked country (most often the US). Notably, the Chinese Academy of Sciences ranks highly (and often first or second) across many of the 44 technologies included in the Critical Technology Tracker. We also see China’s efforts being bolstered through talent and knowledge import: one-fifth of its high-impact papers are being authored by researchers with postgraduate training in a Five-Eyes country.2 China’s lead is the product of deliberate design and long-term policy planning, as repeatedly outlined by Xi Jinping and his predecessors.3
A key area in which China excels is defence and space-related technologies. China’s strides in nuclear-capable hypersonic missiles reportedly took US intelligence by surprise in August 2021.
... That’s because, according to our data analysis, over the past five years, China generated 48.49% of the world’s high-impact research papers into advanced aircraft engines, including hypersonics, and it hosts seven of the world’s top 10 research institutions in this topic area.
The US comes second in the majority of the 44 technologies examined in the Critical Technology Tracker. The US currently leads in areas such as high performance computing, quantum computing and vaccines. Our dataset reveals that there’s a large gap between China and the US, as the leading two countries, and everyone else. The data then indicates a small, second-tier group of countries led by India and the UK: other countries that regularly appear in this group—in many technological fields— include South Korea, Germany, Australia, Italy, and less often, Japan.
...
Given China’s strengths in so many of these technologies, this report unpacks elements of China’s lead, including by examining China’s breakout research capabilities in defence, security and intelligence technologies, along with the long-term policy and planning efforts that underpinned this outcome.
...
Executive summary
... Just a few years ago, a nation could focus its research, resource extraction and manufacturing energies toward its strengths with the assurance that international supply chains would provide the balance of required goods. That world has gone, swept away by Covid-19, geopolitics and changes in global supply chains. Countries have also shown a willingness to withhold supplies of critical materials as a weapon of economic coercion, and an energy crisis is gripping much of the world as a result of the Russian invasion of Ukraine.
...
China is further ahead in more areas than has been realised. It’s the leading country in 37 of the 44 technologies evaluated, often producing more than five times as much high-impact research as its closest competitor. This means that only seven of the 44 analysed technologies are currently led by a democratic country, and that country in all instances is the US.
The US maintains its strengths in the design and development of advanced semiconductor devices and leads in the research fields of high performance computing and advanced integrated circuit design and fabrication. It’s also in front in the crucial areas of quantum computing and vaccines (and medical countermeasures). This is consistent with analysis showing that the US holds the most Covid-19 vaccine patents and sits at the centre of this global collaboration network.9 Medical countermeasures provide protection (and post-exposure management) for military and civilian people against chemical, biological, radiological and nuclear material by providing rapid field-based diagnostics and therapeutics (such as antiviral medications) in addition to vaccines.10
The race to be the next most important technological powerhouse is a close one between the UK and India, both of which claim a place in the top five countries in 29 of the 44 technologies. South Korea and Germany follow closely behind, appearing in the top five countries in 20 and 17 technologies, respectively. Australia is in the top five for nine technologies, followed closely by Italy (seven technologies), Iran (six), Japan (four) and Canada (four). Russia, Singapore, Saudi Arabia, France, Malaysia and the Netherlands are in the top five for one or two technologies. A number of other countries, including Spain and Turkey, regularly make the top 10 countries but aren’t in the top five.
...
A range of organisations shine through, including the University of California system, the Chinese Academy of Sciences, the Indian Institute of Technology, Nanyang Technological University (NTU Singapore), the University of Science and Technology China and a variety of national labs in the US (such as the Lawrence Livermore National Laboratory). The Chinese Academy of Sciences is a particularly high performer, ranking in the top 5 in 27 of the 44 technologies tracked by the Critical Technology Tracker. Comprising of 116 institutes (which gives it a unique advantage over other organisations) it excels in energy and environment technologies, advanced materials (including critical minerals extraction and processing) and in a range of quantum, defence and AI technologies including advanced data analytics, machine learning, quantum sensors, advanced robotics and small satellites. In addition, US technology companies are well represented in some areas, including in the AI category: Google (1st in natural language processing), Microsoft (6th by H-index and 10th by ‘highly cited’ in natural language processing), Facebook (14th by H-index in natural language processing), Hewlett Packard Enterprise (14th by H-index in high performance computing) and IBM (Switzerland and US arms both tying at the 11th place with other institutions by H-index in AI algorithms and hardware accelerators).
...
Who are the individuals publishing the high-impact research that’s propelled China to an impressive lead? Where did they study and train? In advanced aircraft engines (including hypersonics), in which China is publishing more than four times as much high-impact research as the US (2nd place), there are two key insights. First, the majority (68.6%) of high-impact authors trained at Chinese universities and now work in Chinese research institutions. Second, China is also attracting talent to the workplace from democratic countries: 21.6% of high-impact authors completed their postgraduate training in a Five-Eyes country (US = 9.8%, UK = 7.8%, Canada = 3.9%, Australia = none, New Zealand = none), 2% trained in the EU, and 2% trained in Japan. Although not quantified in this work, this is very likely to be a combination of Chinese nationals who went abroad for training and brought their newly acquired expertise back to China, and foreign nationals moving to China to work at a research institution or company.
World-leading research institutes typically also provide training for the next generation of innovators through high-quality undergraduates, masters and PhDs, and employment opportunities in which junior researchers are mentored by experts. As China claims seven of the world’s top 10 research institutions for advanced aircraft engines (including hypersonics), its training system is largely decoupled, as there’s a sufficient critical mass of domestic expertise to train the next generation of top scientists. However, a steady supply of new ideas and techniques is also provided by individuals trained overseas who are attracted to work in Chinese institutions. ..."
No comments:
Post a Comment