Unfortunately, this technology appears not yet to be available to the general public!
"... People with certain genetic disorders share common facial features. Doctors are using computer vision to identify such syndromes in children so they can get early treatment. ...
Face2Gene is an app from Boston-based FDNA that recognizes genetic disorders from images of patients’ faces. Introduced in 2014, it was upgraded recently to identify over 1,000 syndromes (more than three times as many as the previous version) based on fewer examples. In addition, the upgrade can recognize additional conditions as photos of them are added to the company’s database — no retraining required. ..."
Face2Gene is an app from Boston-based FDNA that recognizes genetic disorders from images of patients’ faces. Introduced in 2014, it was upgraded recently to identify over 1,000 syndromes (more than three times as many as the previous version) based on fewer examples. In addition, the upgrade can recognize additional conditions as photos of them are added to the company’s database — no retraining required. ..."
From the abstract:
"Syndromic genetic conditions, in aggregate, affect 8% of the population. Many syndromes have recognizable facial features that are highly informative to clinical geneticists. Recent studies show that facial analysis technologies measured up to the capabilities of expert clinicians in syndrome identification. However, these technologies identified only a few disease phenotypes, limiting their role in clinical settings, where hundreds of diagnoses must be considered. Here we present a facial image analysis framework, DeepGestalt, using computer vision and deep-learning algorithms, that quantifies similarities to hundreds of syndromes. DeepGestalt outperformed clinicians in three initial experiments, two with the goal of distinguishing subjects with a target syndrome from other syndromes, and one of separating different genetic subtypes in Noonan syndrome. On the final experiment reflecting a real clinical setting problem, DeepGestalt achieved 91% top-10 accuracy in identifying the correct syndrome on 502 different images. The model was trained on a dataset of over 17,000 images ... DeepGestalt potentially adds considerable value to phenotypic evaluations in clinical genetics, genetic testing, research and precision medicine."
P.S. Is this face or facial recognition? I suppose the latter.
Identifying facial phenotypes of genetic disorders using deep learning (published 2019, no public access)
No comments:
Post a Comment