Sunday, October 16, 2022

Designer catalyst with enzyme-like cavity splits water almost as fast as plants

Good news! Efficient replication of photosynthesis is one of those holy grails! It could e.g. become a new source of energy supply!

"Using molecular design, researchers have developed a synthetic water oxidation catalyst with an enzyme-like cavity to speed up the reaction. This unusual catalytic system achieves the challenging oxidative water-splitting reaction at a comparable rate to the photosystems found in photosynthesis.
Water oxidation is a key step in photosynthesis and involves splitting two water molecules into molecular oxygen and protons using solar energy. While this process is crucial in nature to sustain life, the ability to cheaply reproduce this reaction could help meet humanity’s energy needs by creating a steady stream of oxygen and hydrogen. Synthetic mimics of the natural oxygen evolving complex are known, but generally suffer from low catalytic activity or short lifetimes. ..."

Unfortunately, the following abstract is extremely technical!

From the abstract:
"Inspired by the proficiency of natural enzymes, mimicking of nanoenvironments for precise substrate preorganization is a promising strategy in catalyst design. However, artificial examples of enzyme-like activation of H2O molecules for the challenging oxidative water splitting reaction are hardly explored. Here, we introduce a mononuclear Ru(bda) complex (M1, bda = 2,2′-bipyridine-6,6′-dicarboxylate) equipped with a bipyridine-functionalized ligand to preorganize H2O molecules in front of the metal centre as in enzymatic clefts. The confined pocket of M1 accelerates chemically driven water oxidation at pH 1 by facilitating a water nucleophilic attack pathway with a remarkable turnover frequency of 140 s−1 that is comparable to the oxygen-evolving complex of photosystem II. Single crystal X-ray analysis of M1 under catalytic conditions allowed the observation of a seventh H2O ligand directly coordinated to a RuIII centre. Another H2O substrate is preorganized via a well-defined hydrogen-bonding network for the crucial O–O bond formation by nucleophilic attack."

Designer catalyst with enzyme-like cavity splits water almost as fast as plants | Research | Chemistry World




No comments: