Very recommendable! A long review article of starting with World War I! It explains quite well why the Russian military is doing so bad in the Ukraine.
It appears, after about 8 years of ongoing war from 2014-2022 with the Russians in Crimean Peninsula and the eastern regions of the Ukraine, the Ukrainian military forces with the help of Western technology had learnt how to successfully counter Russian electronic warfare!
"A MONTH INTO RUSSIA’S INVASION, Ukrainian troops stumbled upon a nondescript shipping container at an abandoned Russian command post outside Kyiv. They did not know it then, but the branch-covered box left by retreating Russian soldiers was possibly the biggest intelligence coup of the young war.
Inside were the guts of one of Russia’s most sophisticated electronic warfare (EW) systems, the Krasukha-4. First fielded in 2014, the Krasukha-4 is a centerpiece of Russia’s strategic EW complement. Designed primarily to jam airborne or satellite-based fire control radars in the X- and Ku-bands, the Krasukha-4 Is often used alongside the Krasukha-2, which targets lower-frequency S-band search radars. Such radars are used on stalwart U.S. reconnaissance platforms, such as the E-8 Joint Surveillance Target Attack Radar System (JSTARS) and Airborne Warning and Control System, or AWACS, aircraft. ...
After nearly a decade of owning the airwaves during a Moscow-backed insurgency in eastern Ukraine, EW was not decisive when Russia went to war in February. ...
At least three of Russia’s five electronic warfare brigades are engaged in Ukraine. ...
U.S. military doctrine defines EW as comprising electronic attack (EA), electronic protection, and electronic support. The most familiar of these is EA, which includes jamming, where a transmitter overpowers or disrupts the waveform of a hostile radar or radio. For instance, the Russian R-330Zh Zhitel jammer can reportedly shut down—within a radius of tens of kilometers—GPS, satellite communications, and cellphone networks in the VHF and UHF bands. Deception is also part of EA, in which a system substitutes its own signal for an expected radar or radio transmission. For example, Russian forces sent propaganda and fake orders to troops and civilians during the 2014–2022 insurgency in eastern Ukraine by hijacking the local cellular network with the RB-341V Leer-3 system. Using soldier-portable Orlan-10 drones managed by a truck-mounted control system, the Leer-3 can extend its range and impact VHF and UHF communications over wider areas. ...
After nearly a decade of owning the airwaves during a Moscow-backed insurgency in eastern Ukraine, EW was not decisive when Russia went to war in February. ...
At least three of Russia’s five electronic warfare brigades are engaged in Ukraine. ...
U.S. military doctrine defines EW as comprising electronic attack (EA), electronic protection, and electronic support. The most familiar of these is EA, which includes jamming, where a transmitter overpowers or disrupts the waveform of a hostile radar or radio. For instance, the Russian R-330Zh Zhitel jammer can reportedly shut down—within a radius of tens of kilometers—GPS, satellite communications, and cellphone networks in the VHF and UHF bands. Deception is also part of EA, in which a system substitutes its own signal for an expected radar or radio transmission. For example, Russian forces sent propaganda and fake orders to troops and civilians during the 2014–2022 insurgency in eastern Ukraine by hijacking the local cellular network with the RB-341V Leer-3 system. Using soldier-portable Orlan-10 drones managed by a truck-mounted control system, the Leer-3 can extend its range and impact VHF and UHF communications over wider areas. ...
The converse of electronic attack is electronic support (ES), which is used to passively detect and analyze an opponent’s transmissions. ES is essential for understanding the potential vulnerabilities of an adversary’s radars or radios. Therefore, most Russian EA systems include ES capabilities that allow them to find and quickly characterize potential jamming targets. Using their ES capabilities, most EA systems can also geolocate enemy radio and cellphone transmissions and then pass that information on so that it can be used to direct artillery or rocket fire—with often devastating effects.
A few Russian systems conduct ES exclusively; one example is the Moskva-1, which is a precision HF/VHF receiver that can use the reflections of TV and radio signals to conduct passive coherent location or passive radar operations. Basically, the system picks up the radio waves of commercial TV and radio transmitters in an area, which will reflect off targets like ships or aircraft. ...
Militaries use electronic protection (EP), also known as electronic countermeasures, to defend against EA and ES. Long considered an afterthought by western forces after the Cold War, EP has risen again to be perhaps the most important aspect of EW as Russia and China field increasingly sophisticated jammers and sensors. EP includes tactics and technologies to shield radio transmissions from being detected or jammed. ...
Using counter-drone systems provided by the United States before the invasion, Ukrainian troops have downed hundreds of Russian drones by jamming their GPS signals or possibly by damaging their electronics with high-powered microwave beams. ...
But today, years of underfunded aviation training and maintenance and the rapid introduction by NATO of Stinger shoulder-launched surface-to-air missiles have largely grounded Russian jets and helicopters during the Ukraine invasion. ...
Without airpower, the Russian assault crawled at the speed of their trucks and tanks. And although they proved effective in the Donbas during the last decade, Russian drones are controlled by line-of-sight radios operating in the Ka- and Ku-bands, which prevented them from straying too far from their operators on the ground. With Russian columns moving along multiple axes into Ukraine and unable to send EW drones well over the horizon, any jamming of Ukrainian forces, some of which were interspersed between Russian formations, would have also taken out Russian radios. ...
Russian EW units did use Leer-3 units to find Ukrainian fighters via their radio and cellphone transmissions, as they had in the Donbas. But unlike Ukraine’s rural east, the areas around Kyiv are relatively densely populated. With civilian cellphone transmissions mixed in with military communications, Russian ES systems were unable to pinpoint military transmitters and use that information to target Ukrainian troops. Making matters worse for the Russians, Ukrainian forces also began using the NATO Single-Channel Ground and Airborne Radio System, or SINCGARS. ...
SINCGARS have built-in encryption. To protect against jamming and interception, SINCGARS automatically hops among frequencies up to 100 times a second across its overall coverage of 30 to 88 megahertz. Because SINCGARS can control signals within 25-kilohertz bands, the user can select among more than 2,000 channels. ...
Ukraine’s defenders also exploited a weakness of the large and powerful Russian EW systems—they are easy to find. Using U.S.-supplied ES gear, Ukrainian troops have been able to detect transmissions from systems like the Leer-3 or Krasukha-4 and direct rocket, artillery, and drone counterattacks against the truck-borne Russian systems. ..."
Militaries use electronic protection (EP), also known as electronic countermeasures, to defend against EA and ES. Long considered an afterthought by western forces after the Cold War, EP has risen again to be perhaps the most important aspect of EW as Russia and China field increasingly sophisticated jammers and sensors. EP includes tactics and technologies to shield radio transmissions from being detected or jammed. ...
Using counter-drone systems provided by the United States before the invasion, Ukrainian troops have downed hundreds of Russian drones by jamming their GPS signals or possibly by damaging their electronics with high-powered microwave beams. ...
But today, years of underfunded aviation training and maintenance and the rapid introduction by NATO of Stinger shoulder-launched surface-to-air missiles have largely grounded Russian jets and helicopters during the Ukraine invasion. ...
Without airpower, the Russian assault crawled at the speed of their trucks and tanks. And although they proved effective in the Donbas during the last decade, Russian drones are controlled by line-of-sight radios operating in the Ka- and Ku-bands, which prevented them from straying too far from their operators on the ground. With Russian columns moving along multiple axes into Ukraine and unable to send EW drones well over the horizon, any jamming of Ukrainian forces, some of which were interspersed between Russian formations, would have also taken out Russian radios. ...
Russian EW units did use Leer-3 units to find Ukrainian fighters via their radio and cellphone transmissions, as they had in the Donbas. But unlike Ukraine’s rural east, the areas around Kyiv are relatively densely populated. With civilian cellphone transmissions mixed in with military communications, Russian ES systems were unable to pinpoint military transmitters and use that information to target Ukrainian troops. Making matters worse for the Russians, Ukrainian forces also began using the NATO Single-Channel Ground and Airborne Radio System, or SINCGARS. ...
SINCGARS have built-in encryption. To protect against jamming and interception, SINCGARS automatically hops among frequencies up to 100 times a second across its overall coverage of 30 to 88 megahertz. Because SINCGARS can control signals within 25-kilohertz bands, the user can select among more than 2,000 channels. ...
Ukraine’s defenders also exploited a weakness of the large and powerful Russian EW systems—they are easy to find. Using U.S.-supplied ES gear, Ukrainian troops have been able to detect transmissions from systems like the Leer-3 or Krasukha-4 and direct rocket, artillery, and drone counterattacks against the truck-borne Russian systems. ..."
The Krasukha-4 is a centerpiece of Russia’s complement of electronic-warfare systems.
No comments:
Post a Comment