Tuesday, May 24, 2022

Ultrathin fuel cell uses the body’s own sugar to generate electricity for future medical implants

Amazing stuff! Good news!

"Engineers at MIT and the Technical University of Munich ... have designed a new kind of glucose fuel cell that converts glucose directly into electricity. The device is smaller than other proposed glucose fuel cells, measuring just 400 nanometers thick, or about 1/100 the diameter of a human hair. The sugary power source generates about 43 microwatts per square centimeter of electricity, achieving the highest power density of any glucose fuel cell to date under ambient conditions. ...
The team is not the first to conceive of a glucose fuel cell, which was initially introduced in the 1960s and showed potential for converting glucose’s chemical energy into electrical energy. But glucose fuel cells at the time were based on soft polymers and were quickly eclipsed by lithium-iodide batteries, which would become the standard power source for medical implants, most notably the cardiac pacemaker. ..."

From the abstract:
"Next-generation implantable devices such as sensors, drug-delivery systems, and electroceuticals require efficient, reliable, and highly miniaturized power sources. Existing power sources such as the Li–I2 pacemaker battery exhibit limited scale-down potential without sacrificing capacity, and therefore, alternatives are needed to power miniaturized implants. This work shows that ceramic electrolytes can be used in potentially implantable glucose fuel cells with unprecedented miniaturization. Specifically, a ceramic glucose fuel cell—based on the proton-conducting electrolyte ceria—that is composed of a freestanding membrane of thickness below 400 nm and fully integrated into silicon for easy integration into bioelectronics is demonstrated. In contrast to polymeric membranes, all materials used are highly temperature stable, making thermal sterilization for implantation trivial. A peak power density of 43 µW cm−2, and an unusually high statistical verification of successful fabrication and electrochemical function across 150 devices for open-circuit voltage and 12 devices for power density, enabled by a specifically designed testing apparatus and protocol, is demonstrated. The findings demonstrate that ceramic-based micro-glucose-fuel-cells constitute the smallest potentially implantable power sources to date and are viable options to power the next generation of highly miniaturized implantable medical devices."

Ultrathin fuel cell uses the body’s own sugar to generate electricity | MIT News | Massachusetts Institute of Technology Engineers have developed a glucose power source that could fuel miniature implants and sensors.

No comments: