Was there early forms of life on Mars? What can we learn from it?
"... "The nature of the water interaction with the igneous rocks is very intriguing and unique chemically. There are carbonates, which require CO2 dissolved in water to form. There are also fascinating combinations of materials such as sulfate and perchlorate, likely formed through evaporating water," ...
The signs of different types of salts, including carbonates, sulfates, and perchlorates along with co-located possible organic compounds were discovered using SHERLOC ... equipped with a number of tools, including a Raman spectrometer that utilizes a specific type of fluorescence to search for organic compounds and also see how they are distributed in a material, providing insight into how they were preserved in that location. ..."
From the abstract:
"The Perseverance rover landed in Jezero crater, Mars in February 2021. We used the Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) instrument to perform deep ultraviolet Raman and fluorescence spectroscopy of three rocks within the crater. We identify evidence for two distinct ancient aqueous environments at different times. Reactions with liquid water formed carbonates in an olivine-rich igneous rock. A sulfate-perchlorate mixture is present in the rocks, probably formed by later modifications of the rocks by brine. Fluorescence signatures consistent with aromatic organic compounds occur throughout these rocks, preserved in minerals related to both aqueous environments."
No comments:
Post a Comment