Good news! This is not the very latest research, but nevertheless important.
"... In the study ... scientists sorted 40 different brain diseases and disorders by looking at where genes important to those diseases are switched on, or expressed, in the healthy human brain. The Venn diagram of disease-linked genes and their locales revealed some surprising insights — for example, in this analysis, multiple sclerosis looks a lot like brain cancer. ...
The researchers identified 40 brain diseases and psychiatric disorders for which their genetic causes are at least partially known, including neurodegenerative diseases like Alzheimer’s and Parkinson’s disease; psychiatric disorders such as autism, schizophrenia, and bipolar disorder; brain cancers such as glioblastoma; and several other brain-related diseases. Most of these diseases and disorders are very complicated, genetically speaking. Some disorders arise from mutations in hundreds of different genes, and genetic causes for the same disease often vary from person to person. ...
But some diseases lined up in interesting ways: multiple sclerosis and migraine disorders share a grouping with cancers; some addiction disorders overlap with psychiatric diseases, while alcoholism paired with Huntington’s disease and Parkinson’s. ...
The team also asked which individual neurons and other brain cells switch on disease-related genes, using a ... dataset from one region of the cortex, the outermost shell of the brain. They found that genes linked to some diseases, like brain cancers and neurodegenerative diseases like Alzheimer’s disease, tend to cluster in cells known as inhibitory neurons, which shut off other neurons’ activity. Other diseases, including many psychiatric disorders, clustered more with excitatory neurons, those that activate other neurons. ..."
The researchers identified 40 brain diseases and psychiatric disorders for which their genetic causes are at least partially known, including neurodegenerative diseases like Alzheimer’s and Parkinson’s disease; psychiatric disorders such as autism, schizophrenia, and bipolar disorder; brain cancers such as glioblastoma; and several other brain-related diseases. Most of these diseases and disorders are very complicated, genetically speaking. Some disorders arise from mutations in hundreds of different genes, and genetic causes for the same disease often vary from person to person. ...
But some diseases lined up in interesting ways: multiple sclerosis and migraine disorders share a grouping with cancers; some addiction disorders overlap with psychiatric diseases, while alcoholism paired with Huntington’s disease and Parkinson’s. ...
The team also asked which individual neurons and other brain cells switch on disease-related genes, using a ... dataset from one region of the cortex, the outermost shell of the brain. They found that genes linked to some diseases, like brain cancers and neurodegenerative diseases like Alzheimer’s disease, tend to cluster in cells known as inhibitory neurons, which shut off other neurons’ activity. Other diseases, including many psychiatric disorders, clustered more with excitatory neurons, those that activate other neurons. ..."
From the abstract:
"Genes associated with risk for brain disease exhibit characteristic expression patterns that reflect both anatomical and cell type relationships. Brain-wide transcriptomic patterns of disease risk genes provide a molecular-based signature, based on differential co-expression, that is often unique to that disease. Brain diseases can be compared and aggregated based on the similarity of their signatures which often associates diseases from diverse phenotypic classes. Analysis of 40 common human brain diseases identifies 5 major transcriptional patterns, representing tumor-related, neurodegenerative, psychiatric and substance abuse, and 2 mixed groups of diseases affecting basal ganglia and hypothalamus. Further, for diseases with enriched expression in cortex, single-nucleus data in the middle temporal gyrus (MTG) exhibits a cell type expression gradient separating neurodegenerative, psychiatric, and substance abuse diseases, with unique excitatory cell type expression differentiating psychiatric diseases. Through mapping of homologous cell types between mouse and human, most disease risk genes are found to act in common cell types, while having species-specific expression in those types and preserving similar phenotypic classification within species. These results describe structural and cellular transcriptomic relationships of disease risk genes in the adult brain and provide a molecular-based strategy for classifying and comparing diseases, potentially identifying novel disease relationships."
A comparison of anatomic and cellular transcriptome structures across 40 human brain diseases (open access)
Fig 1. Transcriptome patterning of major brain diseases
No comments:
Post a Comment