Wednesday, April 19, 2023

MRI imaging at 64 million higher resolution give a new look at the whole mouse brain in vivo

Amazing stuff! This level of detail is mind blowing!

"... “We can start looking at neurodegenerative diseases in an entirely different way.” ... The culmination of almost 40 years of work ... this MRI resolution was only made possible with some impressive technology. The team used a powerful 9.4-Tesla magnet (clinical MRIs generally have a 1.5-to-3-Tesla magnet), a set of gradient coils 100 times stronger than in standard scans, and a super-computer equivalent to 800 laptops, all working to capture the single mouse brain.
What’s more, after the MRI visuals were complete, the researchers had the brain tissue scanned by light sheet microscopy. This enabled the scientists to label specific groups of cells, allowing them to watch how neurodegenerative diseases progress over time. ..."

"... A single voxel of the new images – think of it as a cubic pixel – measures just 5 microns. That’s 64 million times smaller than a clinical MRI voxel. ...
One set of MRI images shows how brain-wide connectivity changes as mice age, as well as how specific regions, like the memory-involved subiculum, change more than the rest of the mouse’s brain.
Another set of images showcases a spool of rainbow-colored brain connections that highlight the remarkable deterioration of neural networks in a mouse model of Alzheimer’s disease. ..."

From the significance and abstract:
"Significance
We demonstrate the highest-resolution MR images ever obtained of the mouse brain. The diffusion tensor images (DTI) @ 15 μm spatial resolution are 1,000 times the resolution of most preclinical rodent DTI/MRI. Superresolution track density images are 27,000 times that of typical preclinical DTI/MRI. High angular resolution yielded the most detailed MR connectivity maps ever generated. High-performance computing pipelines merged the DTI with light sheet microscopy of the same specimen, providing a comprehensive picture of cells and circuits. The methods have been used to demonstrate how strain differences result in differential changes in connectivity with age. We believe the methods will have broad applicability in the study of neurodegenerative diseases.
Abstract
We have developed workflows to align 3D magnetic resonance histology (MRH) of the mouse brain with light sheet microscopy (LSM) and 3D delineations of the same specimen. We start with MRH of the brain in the skull with gradient echo and diffusion tensor imaging (DTI) at 15 μm isotropic resolution which is ~ 1,000 times higher than that of most preclinical MRI. Connectomes are generated with superresolution tract density images of ~5 μm. Brains are cleared, stained for selected proteins, and imaged by LSM at 1.8 μm/pixel. LSM data are registered into the reference MRH space with labels derived from the ABA common coordinate framework. The result is a high-dimensional integrated volume with registration (HiDiver) with alignment precision better than 50 µm. Throughput is sufficiently high that HiDiver is being used in quantitative studies of the impact of gene variants and aging on mouse brain cytoarchitecture and connectomics."

Scans that are 64 million times clearer give a new look at the brain Fifty years on from American chemist Pal Laterbur detailing the first magnetic resonance imaging (MRI), scientists have marked this historic medical anniversary with the sharpest-ever scans of a mouse brain.

Brain Images Just Got 64 Million Times Sharper MRI technology from Duke-led effort reveals the entire mouse brain in the highest resolution






No comments: