Amazing stuff, but is it scalable to thousands or ten thousands or more plants?
"... Developing delivery systems that efficiently deploy agrochemicals such as micronutrients, pesticides, and antibiotics in crops will help ensure high productivity and high produce quality, while minimizing the waste of resources, is crucial.
Now, researchers ... have developed the first-ever microneedle-based drug delivery technique for plants. The method can be used to precisely deliver controlled amounts of agrochemicals to specific plant tissues for research purposes. ...
Through gene expression analysis, the researchers could closely examine the reactions to drug delivery following microneedle injection. Minimal scar and callus formation were observed, suggesting minimal injection-induced wounding to the plant. The proof of concept provided in this study opens the door to plant microneedles’ application in plant biology and agriculture, enabling new means to regulate plant physiology and study metabolisms via efficient and effective delivery of payloads. ..."
Now, researchers ... have developed the first-ever microneedle-based drug delivery technique for plants. The method can be used to precisely deliver controlled amounts of agrochemicals to specific plant tissues for research purposes. ...
Through gene expression analysis, the researchers could closely examine the reactions to drug delivery following microneedle injection. Minimal scar and callus formation were observed, suggesting minimal injection-induced wounding to the plant. The proof of concept provided in this study opens the door to plant microneedles’ application in plant biology and agriculture, enabling new means to regulate plant physiology and study metabolisms via efficient and effective delivery of payloads. ..."
From the abstract:
"New systems for agrochemical delivery in plants will foster precise agricultural practices and provide new tools to study plants and design crop traits, as standard spray methods suffer from elevated loss and limited access to remote plant tissues. Silk-based microneedles can circumvent these limitations by deploying a known amount of payloads directly in plants’ deep tissues. However, plant response to microneedles’ application and microneedles’ efficacy in deploying physiologically relevant biomolecules are unknown. Here, it is shown that gene expression associated with Arabidopsis thaliana wounding response decreases within 24 h post microneedles’ application. Additionally, microinjection of gibberellic acid (GA3) in A. thaliana mutant ft-10 provides a more effective and efficient mean than spray to activate GA3 pathways, accelerating bolting and inhibiting flower formation. Microneedle efficacy in delivering GA3 is also observed in several monocot and dicot crop species, i.e., tomato (Solanum lycopersicum), lettuce (Lactuca sativa), spinach (Spinacia oleracea), rice (Oryza Sativa), maize (Zea mays), barley (Hordeum vulgare), and soybean (Glycine max). The wide range of plants that can be successfully targeted with microinjectors opens the doors to their use in plant science and agriculture."
Drug Delivery in Plants Using Silk Microneedles (open access)
Silk microneedle array on a U.S. dime to show scale
No comments:
Post a Comment