Wednesday, September 01, 2021

Optical Genome Mapping Works Well in Detecting Cancer Risk

Good news! Cancer is history!

"...  method known as optical genome mapping [OGM]. This technique uses fluorescence microscopy to visualize the structure of DNA molecules, which in aggregate provides an overall map of a genome’s structure. In their studies, a single optical map could detect disease-relevant structural variants previously identified by one or more of three established mapping tools. The researchers say that this single test, initially developed by David Schwartz of New York University in the 1990s, could eventually displace all the others. ..."

"... This proof-of-principle study demonstrates the ability of OGM to detect nearly all types of chromosomal aberrations. We also suggest suited filtering strategies to prioritize clinically relevant aberrations and discuss future improvements. These results highlight the potential for OGM to provide a cost-effective and easy-to-use alternative that would allow comprehensive detection of chromosomal aberrations and structural variants, which could give rise to an era of “next-generation cytogenetics."

"... For the 16 complex cases, results were largely concordant between standard-of-care and OGM, but OGM often revealed higher complexity than previously recognized. Detailed technical comparison with standard-of-care tests showed high analytical validity of OGM, resulting in a sensitivity of 100% and a positive predictive value of >80%. Importantly, OGM resulted in a more complete assessment than any previous single test and most likely reported the most accurate underlying genomic architecture (e.g., for complex translocations, chromoanagenesis, and marker chromosomes). In conclusion, the excellent concordance of OGM with diagnostic standard assays demonstrates its potential to replace classical cytogenetic tests as well as to rapidly map novel leukemia drivers."

Optical Genome Mapping Works Well in Detecting Cancer Risk | The Scientist Magazine® The relatively new technique for visually detecting chromosomal variants associated with disease risk performs at least as well as more established techniques in two recent studies.


No comments: