Monday, October 21, 2024

Diamond fused to sapphire and other materials might be the next big quantum thing

Amazing stuff! Possibly very useful!

"Scientists have fused a diamond to a sapphire. And to silicon, lithium, and a few other materials. ...

But diamond is also homoepitaxial – it only grows on other diamonds. This makes it much less useful. ...

it has very high electrical resistance, but it conducts heat very well. .. tiny defects called nitrogen vacancy centres which are ideal for hosting quantum systems. ...

The result is a diamond membrane, as small as 10 nanometres thick, neatly bonded to another substance. ..."

"Synthetic diamond is durable, inert, rigid, thermally conductive and chemically well-behaved—an elite material for both quantum and conventional electronics. But there’s one problem. Diamond only likes diamond. ...

By precisely engineering defects in the crystal lattice, researchers create durable qubits ideal for quantum computing, quantum sensing and other applications. ..."

From the abstract:
"Diamond has superlative material properties for a broad range of quantum and electronic technologies. However, heteroepitaxial growth of single crystal diamond remains limited, impeding integration and evolution of diamond-based technologies. Here, we directly bond single-crystal diamond membranes to a wide variety of materials including silicon, fused silica, sapphire, thermal oxide, and lithium niobate. Our bonding process combines customized membrane synthesis, transfer, and dry surface functionalization, allowing for minimal contamination while providing pathways for near unity yield and scalability. We generate bonded crystalline membranes with thickness as low as 10 nm, sub-nm interfacial regions, and nanometer-scale thickness variability over 200 by 200 μm2 areas. We measure spin coherence times T2 for nitrogen vacancy centers in 150 nm-thick bonded membranes of up to 623 ± 21 μs, suitable for advanced quantum applications. We demonstrate multiple methods for integrating high quality factor nanophotonic cavities with the diamond heterostructures, highlighting the platform versatility in quantum photonic applications. Furthermore, we show that our ultra-thin diamond membranes are compatible with total internal reflection fluorescence (TIRF) microscopy, which enables interfacing coherent diamond quantum sensors with living cells while rejecting unwanted background luminescence. The processes demonstrated herein provide a full toolkit to synthesize heterogeneous diamond-based hybrid systems for quantum and electronic technologies."

Diamond fused to sapphire might be the next big quantum thing

New diamond bonding technique a breakthrough for quantum devices (original news release) "New technique allows greater integration of synthetic diamonds, improving how both quantum and conventional electronics are built"



Fig. 1: Schematics of the plasma-activated bonding of diamond membranes.



Fig. 2: Characterization of the bonded membrane.


No comments: