Thursday, October 17, 2024

Engineers set new world record on how fast data can be sent wirelessly at a speed of 938 Gigabits per second (Gb/s) over a record frequency range of 5-150 Gigahertz (GHz).

Good news! 6G wireless is coming!

"... This speed is up to 9,380 times faster than the best average 5G download speed in the UK, which is currently 100 Megabits per second (Mb/s) or over1. The total bandwidth of 145GHz is more than five times higher than the previous wireless transmission world record. ...

“Our new approach combines two existing wireless technologies for the first time, high-speed electronics and millimetre wave photonics, to overcoming these barriers. This new system allows for the transmission of large amounts of data at unprecedented speeds, which will be crucial for the future of wireless communications.”

To address the current limitations of wireless technology, researchers ... developed a novel approach that combines advanced electronics, which performs well in the 5-50 GHz range, and a technology called photonics that uses light to generate radio information, which performs well in the 50-150GHz range. ...

For example, a two-hour 4k Ultra HD film (around 14GB of data) would take 19 minutes to download over 5G at 100 Mb/s. Using the new technology it could be downloaded in just 0.12 seconds. ..."


From the abstract:
"The next-generation radio access network (RAN) requires high speed wireless transmission between base stations exceeding ≥ 100 Gb/s to connect access points and hubs. This has motivated research exploring how to fully utilize wireless spectrum from sub-6 GHz to millimeter (mm) waveband (e.g. D-band up to 170 GHz) for data transmission, using either all-electronic or optoelectronic approaches. However, to date, all-electronic and optoelectronic methods have been used separately due to the challenge of generating broad-band signals with synchronized carrier frequencies. Here, we demonstrate an ultra-wide 145 GHz bandwidth wireless transmission of orthogonal frequency-division multiplexing (OFDM) signals over the air, covering 5–150 GHz frequency region. This is achieved by combining the merits of high-speed electronics and microwave photonics technologies. Specifically, the signals over 5–75 GHz are generated using high speed digital-to-analog converters. The high frequency mm-wave band signals, including W-band (75–110 GHz) and D-band (110–150 GHz) signals, are generated by mixing optically modulated signals with frequency-locked lasers on high-speed photodiodes. By frequency-locking two pairs of narrow linewidth lasers and referring to a common quartz oscillator, we generated W-band and D-band signals with stable carrier frequency and reduced phase noise compared to free-running lasers, maximizing the use of spectrum. By using OFDM format and bit loading, we achieve 938 Gb/s transmission data rate with less than 300 MHz gap between different RF and mm-wave bands."

UCL engineers set new record on how fast data can be sent wirelessly | UCL News - UCL – University College London



Graphical abstract


No comments: