Amazing stuff!
"Fast radio bursts are brief and brilliant explosions of radio waves emitted by extremely compact objects such as neutron stars and possibly black holes. These fleeting fireworks last for just a thousandth of a second and can carry an enormous amount of energy — enough to briefly outshine entire galaxies. ...
Since the first fast radio burst (FRB) was discovered in 2007, astronomers have detected thousands of FRBs, whose locations range from within our own galaxy to as far as 8 billion light-years away. Exactly how these cosmic radio flares are launched is a highly contested unknown. ..."
From the abstract:
"Fast radio bursts (FRBs) are microsecond-to-millisecond-duration radio transients that originate mostly from extragalactic distances. The FRB emission mechanism remains debated, with two main competing classes of models: physical processes that occur within close proximity to a central engine; and relativistic shocks that propagate out to large radial distances. The expected emission-region sizes are notably different between these two types of models.
Here we present the measurement of two mutually coherent scintillation scales in the frequency spectrum of FRB 20221022A10: one originating from a scattering screen located within the Milky Way, and the second originating from its host galaxy or local environment.
We use the scattering media as an astrophysical lens to constrain the size of the observed FRB lateral emission region to ≲3 × 104 kilometres. This emission size is inconsistent with the expectation for the large-radial-distance models, and is more naturally explained by an emission process that operates within or just beyond the magnetosphere of a central compact object. Recently, FRB 20221022A was found to exhibit an S-shaped polarization angle swing, most likely originating from a magnetospheric emission process. The scintillation results presented in this work independently support this conclusion, while highlighting scintillation as a useful tool in our understanding of FRB emission physics and progenitors."
MIT scientists pin down the origins of a fast radio burst "The fleeting cosmic firework likely emerged from the turbulent magnetosphere around a far-off neutron star."
Magnetospheric origin of a fast radio burst constrained using scintillation (no public access)