Tuesday, April 23, 2024

Unravelling the chemistry of the interstellar medium in a laboratory on Earth

Amazing stuff!

"Despite all appearances, the space between stars, known as the interstellar medium, is anything but empty. Atoms, ions, and molecules reside in this freezing, low-pressure environment. ..."

"... Interstellar Medium (ISM). The ISM has fascinated scientists for decades, as at least 200 unique molecules form in its cold, low-pressure environment. It’s a subject that ties together the fields of chemistry, physics, and astronomy, as scientists from each field work to determine what types of chemical reactions happen there. ...
From their experiments, the researchers resolved chemical dynamics in ion-neutral reactions by using precise laser cooling and mass spectrometry to control quantum states, thereby allowing them to emulate ISM chemical reactions successfully. Their work brings scientists closer to answering some of the most profound questions about the chemical development of the cosmos. ...
Besides trap filtration and Doppler cooling, the researchers' third experimental technique helped them emulate the ISM reactions: their time-of-flight mass spectrometry (TOF-MS) setup. In this part of the experiment, a high-voltage pulse accelerated the ions down a flight tube, where they collided with a microchannel plate detector. The researchers could determine which particles were present in the trap based on the time it took for the ions to hit the plate and their imaging techniques. ..."

From the abstract:
"Coulomb crystals provide a unique environment in which to study ion-neutral gas-phase reactions. In these cold, trapped ensembles, we are able to study the kinetics and dynamics of small molecular systems. These measurements have connections to chemistry in the Interstellar Medium (ISM) and planetary atmospheres. This Feature Article will describe recent work in our laboratory that uses Coulomb crystals to study translationally cold, ion-neutral reactions. We provide a description of how the various affordances of our experimental system allow for detailed studies of the reaction mechanisms and the corresponding products. In particular, we will describe quantum-state resolved reactions, isomer-dependent reactions, and reactions with a rarely studied, astrophysically relevant ion, CCl+."

Unravelling the chemistry of the interstellar medium on Earth


Cold Ion–Molecule Reactions in the Extreme Environment of a Coulomb Crystal (no public access, but link to first article above contains a link to the PDF)



No comments: