Good news!
"... some 30-40 percent of America’s food supply ends up in landfills, mostly due to spoilage. At the same time, the World Health Organization estimates that foodborne illness from microbial contamination causes about 420,000 deaths per year worldwide. ...
Now, researchers ... have developed a biodegradable, antimicrobial food packaging system that does both. ...
he new food packing system has its roots in battlefield medicine. For more than a decade, Parker and his Disease Biophysics Group have been developing antimicrobial fibers for wound dressings. Their fiber manufacturing platform, known as Rotary Jet-Spinning (RJS), was designed specifically for the purpose. ...
The researchers dissolved the pullulan polymer in water and mixed it with range of naturally derived antimicrobial agents, including thyme oil, nisin, and citric acid. ...
he new food packing system has its roots in battlefield medicine. For more than a decade, Parker and his Disease Biophysics Group have been developing antimicrobial fibers for wound dressings. Their fiber manufacturing platform, known as Rotary Jet-Spinning (RJS), was designed specifically for the purpose. ...
The researchers dissolved the pullulan polymer in water and mixed it with range of naturally derived antimicrobial agents, including thyme oil, nisin, and citric acid. ...
After seven days on a lab bench, 90 percent of unwrapped avocados were rotten while only 50 percent of avocados wrapped in antimicrobial pullulan fibers rotted.
The wrapping is also water soluble and biodegradable, rinsing off without any residue on the avocado surface. ..."
From the abstract:
"Food waste and food safety motivate the need for improved food packaging solutions. However, current films/coatings addressing these issues are often limited by inefficient release dynamics that require large quantities of active ingredients. Here we developed antimicrobial pullulan fibre (APF)-based packaging that is biodegradable and capable of wrapping food substrates, increasing their longevity and enhancing their safety. APFs were spun using a high-throughput system, termed focused rotary jet spinning, with water as the only solvent, allowing the incorporation of naturally derived antimicrobial agents. Using avocados as a representative example, we demonstrate that APF-coated samples had their shelf life extended by inhibited proliferation of natural microflora, and lost less weight than uncoated control samples. This work offers a promising technique to produce scalable, low-cost and environmentally friendly biodegradable antimicrobial packaging systems."
No comments:
Post a Comment