Amazing stuff! Intriguing experimental setup! This study may lead to a better understanding of neurons as neurons appear to be much more dynamic and multitasking than previously thought.
"... “Most brain research projects focus on one type of behavior at a time, so little is known about the way the brain handles dynamically changing behavioral needs,” ...
when spotting another animal flying rapidly toward them, the bats promptly raised their rate of echolocation clicks, signifying elevated attention levels. As their attention increased, a rapid shift occurred in the neural circuits in the bats’ hippocampus, the main brain area responsible for navigation, among other functions. The scientists discovered this shift by recording electrical signals from individual neurons in this area, known as place cells. ...
To the scientists’ surprise, this switch occurred extremely rapidly, within some 100 milliseconds, or one-tenth of a second. ...
Some parts of the brain have already been shown to be less rigidly determined than thought – a phenomenon known as plasticity – but this occurs on slower time-scales, reflecting longer-term biochemical changes in the brain’s synapses, the connections between neurons. ..."
when spotting another animal flying rapidly toward them, the bats promptly raised their rate of echolocation clicks, signifying elevated attention levels. As their attention increased, a rapid shift occurred in the neural circuits in the bats’ hippocampus, the main brain area responsible for navigation, among other functions. The scientists discovered this shift by recording electrical signals from individual neurons in this area, known as place cells. ...
To the scientists’ surprise, this switch occurred extremely rapidly, within some 100 milliseconds, or one-tenth of a second. ...
Some parts of the brain have already been shown to be less rigidly determined than thought – a phenomenon known as plasticity – but this occurs on slower time-scales, reflecting longer-term biochemical changes in the brain’s synapses, the connections between neurons. ..."
From the abstract:
"Throughout their daily lives, animals and humans often switch between different behaviours. However, neuroscience research typically studies the brain while the animal is performing one behavioural task at a time, and little is known about how brain circuits represent switches between different behaviours. Here we tested this question using an ethological setting: two bats flew together in a long 135 m tunnel, and switched between navigation when flying alone (solo) and collision avoidance as they flew past each other (cross-over). Bats increased their echolocation click rate before each cross-over, indicating attention to the other bat. Hippocampal CA1 neurons represented the bat’s own position when flying alone (place coding). Notably, during cross-overs, neurons switched rapidly to jointly represent the interbat distance by self-position. This neuronal switch was very fast—as fast as 100 ms—which could be revealed owing to the very rapid natural behavioural switch. The neuronal switch correlated with the attention signal, as indexed by echolocation. Interestingly, the different place fields of the same neuron often exhibited very different tuning to interbat distance, creating a complex non-separable coding of position by distance. Theoretical analysis showed that this complex representation yields more efficient coding. Overall, our results suggest that during dynamic natural behaviour, hippocampal neurons can rapidly switch their core computation to represent the relevant behavioural variables, supporting behavioural flexibility."
Extended Data Fig. 2: Bats were attentive to the other bat during cross-overs, as indicated by increased echolocation click-rate.
No comments:
Post a Comment