Sunday, October 03, 2021

Zeroing in on the origins of Earth’s “single most important evolutionary innovation”

Recommendable!

"... Now, MIT scientists have a precise estimate for when cyanobacteria, and oxygenic photosynthesis, first originated. ...
They developed a new gene-analyzing technique that shows that all the species of cyanobacteria living today can be traced back to a common ancestor that evolved around 2.9 billion years ago. They also found that the ancestors of cyanobacteria branched off from other bacteria around 3.4 billion years ago, with oxygenic photosynthesis likely evolving during the intervening half-billion years, during the Archean Eon.

Interestingly, this estimate places the appearance of oxygenic photosynthesis at least 400 million years before the Great Oxidation Event, a period in which the Earth’s atmosphere and oceans first experienced a rise in oxygen. This suggests that cyanobacteria may have evolved the ability to produce oxygen early on, but that it took a while for this oxygen to really take hold in the environment. ..."

From the abstract:
"... We further show that incorporating relative dating information from horizontal gene transfers greatly improves the precision of these age estimates, by both providing a novel empirical criterion for selecting evolutionary models, and increasing the stringency of sampling of posterior age estimates. Independent of any geochemical evidence or hypotheses, these results support oxygenic photosynthesis evolving at least several hundred million years before the Great Oxygenation Event (GOE), a rapid diversification of major cyanobacterial lineages around the time of the GOE, and a post-Cryogenian origin of extant marine picocyanobacterial diversity."

Zeroing in on the origins of Earth’s “single most important evolutionary innovation” | MIT News | Massachusetts Institute of Technology A new study shows oxygenic photosynthesis likely evolved between 3.4 and 2.9 billion years ago.

No comments: