Can it also print warts, wrinkles, and scars? (just kidding)
"... For their new study, the Rensselaer researchers first cultivated skin and follicle cells, then used them with proteins to create a bio-ink for the printer. The printer meticulously constructed the skin, embedding channels for the hair cells, which then developed into follicle-like structures. While the current lifespan of these tissues (two to three weeks) limits full hair shaft growth, the team aims to extend this period, enhancing their use in drug testing and for skin grafts. ..."
"A team led by scientists at Rensselaer Polytechnic Institute has 3D-printed hair follicles in human skin tissue cultured in the lab. This marks the first time researchers have used the technology to generate hair follicles, which play an important role in skin healing and function. ..."
From the abstract:
"Current approaches fail to adequately introduce complex adnexal structures such as hair follicles within tissue engineered models of skin. Here, we report on the use of 3D bioprinting to incorporate these structures in engineered skin tissues. Spheroids, induced by printing dermal papilla cells (DPCs) and human umbilical vein cells (HUVECs), were precisely printed within a pregelled dermal layer containing fibroblasts. The resulting tissue developed hair follicle–like structures upon maturation, supported by migration of keratinocytes and melanocytes, and their morphology and composition grossly mimicked that of the native skin tissue. Reconstructed skin models with increased complexity that better mimic native adnexal structures can have a substantial impact on regenerative medicine as grafts and efficacy models to test the safety of chemical compounds."
Scientists 3D-print hair follicles in lab-grown skin The technique represents an important step in engineering skin grafts, drug testing
Fig. 2. Characterization of complex 3D bioprinted spheroids generated with different cell compositions.
No comments:
Post a Comment