Monday, October 23, 2023

Nanomaterial wirelessly stimulates and regrows severed nerves and restores motor function

Good news! Amazing stuff!

"... In creating the particles, researchers at Rice University started with two layers of a metallic glass alloy called Metglas and wedged a piezoelectric layer of lead zirconium titanate in between them. Piezoelectric materials generate electricity when they have mechanical forces applied to them. Metglas is a magnetostrictive material, which means it changes its shape when it has a magnetic field applied to it. In this case, the change in shape of the Metglas in the presence of magnetic pulses caused the piezoelectric material inside to generate an electrical signal. Materials that do this are known as magnetoelectric. ...
Next they tested the material in rats and found that it could not only stimulate peripheral nerves in the rodents when they were under anesthesia, but that it could also restore function in a severed sciatic nerve. It also proved to operate about 120 times faster than similar materials that have been previously developed. ..."

"... The material’s qualities and performance could have a profound impact on neurostimulation treatments, making for significantly less invasive procedures, ...  Instead of implanting a neurostimulation device, tiny amounts of the material could simply be injected at the desired site. Moreover, given magnetoelectrics’ range of application in computing, sensing, electronics and other fields, the research provides a framework for advanced materials design that could drive innovation more broadly. ..."

From the abstract:
"Magnetoelectric materials convert magnetic fields into electric fields. These materials are often used in wireless electronic and biomedical applications. For example, magnetoelectrics could enable the remote stimulation of neural tissue, but the optimal resonance frequencies are typically too high to stimulate neural activity. Here we describe a self-rectifying magnetoelectric metamaterial for a precisely timed neural stimulation. This metamaterial relies on nonlinear charge transport across semiconductor layers that allow the material to generate a steady bias voltage in the presence of an alternating magnetic field. We generate arbitrary pulse sequences with time-averaged voltage biases in excess of 2 V. As a result, we can use magnetoelectric nonlinear metamaterials to wirelessly stimulate peripheral nerves to restore a sensory reflex in an anaesthetized rat model and restore signal propagation in a severed nerve with latencies of less than 5 ms. Overall, these results showing the rational design of magnetoelectric metamaterials support applications in advanced biotechnology and electronics."

Nanomaterial stimulates and regrows severed nerves like sci-fi tech

Rice-engineered material can reconnect severed nerves Magnetoelectric material is first of its kind able to directly stimulate neural tissue


Fig. 1: MNMs enable wireless neuromodulation using magnetic fields.


No comments: