Monday, January 06, 2025

Physicists magnetize a material with light

Amazing stuff!

"... Using carefully tuned terahertz light, the ... team was able to controllably switch an antiferromagnet to a new magnetic state. Antiferromagnets could be incorporated into future memory chips that store and process more data while using less energy and taking up a fraction of the space of existing devices, owing to the stability of magnetic domains. ...

researchers report using a terahertz laser — a light source that oscillates more than a trillion times per second — to directly stimulate atoms in an antiferromagnetic material. The laser’s oscillations are tuned to the natural vibrations among the material’s atoms, in a way that shifts the balance of atomic spins toward a new magnetic state. ..."

From the abstract:
"Controlling the functional properties of quantum materials with light has emerged as a frontier of condensed-matter physics, leading to the discovery of various light-induced phases of matter, such as superconductivity, ferroelectricity, magnetism and charge density waves. However, in most cases, the photoinduced phases return to equilibrium on ultrafast timescales after the light is turned off, limiting their practical applications.
Here we use intense terahertz pulses to induce a metastable magnetization with a remarkably long lifetime of more than 2.5 milliseconds in the van der Waals antiferromagnet FePS3. The metastable state becomes increasingly robust as the temperature approaches the antiferromagnetic transition point, suggesting that critical order parameter fluctuations play an important part in facilitating the extended lifetime.
By combining first-principles calculations with classical Monte Carlo and spin dynamics simulations, we find that the displacement of a specific phonon mode modulates the exchange couplings in a manner that favours a ground state with finite magnetization near the Néel temperature. This analysis also clarifies how the critical fluctuations of the dominant antiferromagnetic order can amplify both the magnitude and the lifetime of the new magnetic state. Our discovery demonstrates the efficient manipulation of the magnetic ground state in layered magnets through non-thermal pathways using terahertz light and establishes regions near critical points with enhanced order parameter fluctuations as promising areas to search for metastable hidden quantum states."

Physicists magnetize a material with light | MIT News | Massachusetts Institute of Technology "The technique provides researchers with a powerful tool for controlling magnetism, and could help in designing faster, smaller, more energy-efficient memory chips."



THz field-induced non-equilibrium state with a net magnetization a,d,g, THz field-induced long-lived polarization rotation


No comments: