Good news! An oral microjet delivery system.
Can these capsules be reused after they end up in wastewater?
"... developed an ingestible capsule that releases a burst of drugs directly into the wall of the stomach or other organs of the digestive tract.
This capsule could offer an alternative way to deliver drugs that normally have to be injected, such as insulin and other large proteins, including antibodies. This needle-free strategy could also be used to deliver RNA, either as a vaccine or a therapeutic molecule to treat diabetes, obesity, and other metabolic disorders. ...
The researchers came up with two ways to mimic this jetting action, using compressed carbon dioxide or tightly coiled springs to generate the force needed to propel liquid drugs out of the capsule. The gas or spring is kept in a compressed state by a carbohydrate trigger, which is designed to dissolve when exposed to humidity or an acidic environment such as the stomach. When the trigger dissolves, the gas or spring is allowed to expand, propelling a jet of drugs out of the capsule. ...
Made of metal and plastic, the capsules can pass through the digestive tract and are excreted after releasing their drug payload. ..."
From the abstract:
"Needle-based injections currently enable the administration of a wide range of biomacromolecule therapies across the body, including the gastrointestinal tract, through recent developments in ingestible robotic devices. However, needles generally require training, sharps management and disposal, and pose challenges for autonomous ingestible systems. Here, inspired by the jetting systems of cephalopods, we have developed and evaluated microjet delivery systems that can deliver jets in axial and radial directions into tissue, making them suitable for tubular and globular segments of the gastrointestinal tract. Furthermore, they are implemented in both tethered and ingestible formats, facilitating endoscopic applications or patient self-dosing. Our study identified suitable pressure and nozzle dimensions for different segments of the gastrointestinal tract and applied microjets in a variety of devices that support delivery across the various anatomic segments of the gastrointestinal tract. We characterized the ability of these systems to administer macromolecules, including insulin, a glucagon-like peptide-1 (GLP1) analogue and a small interfering RNA (siRNA) in large animal models, achieving exposure levels similar to those achieved with subcutaneous delivery. This research provides key insights into jetting design parameters for gastrointestinal administration, substantially broadening the possibilities for future endoscopic and ingestible drug delivery devices."
Fig. 1: Axial and radial MiDe jetting concepts for needle-free drug delivery to gastrointestinal organs.
No comments:
Post a Comment